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What is a Digital Image? (Review)

 Spatial domain of the image is the set of pixels composing 
the image

 Enhancement in the spatial domain involves direct 
operation on the pixel intensities

 This can be expressed mathematically as

g(x,y) = T[f(x,y)]

 f(x,y) is the input image

 g(x,y) is the output image

 T[ ] is an operator defined over some neighborhood of (x,y)

 Important
 Keep in mind that g(x,y) may take any value from the set of 

available gray levels only. Thus, when mapping we should 4 
assign the mapped value to the closest level
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Background
3

 Defining the neighborhood around (x,y)
 Use a square/rectangular subimage that is centered at (x,y)

 Operation
 Move the center of the subimage from pixel to pixel and apply the 

operator T at each location (x,y) to compute the output g(x,y)



Background
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 The simplest form of the operator T is when the 
neighborhood size is 1x1 pixels. Accordingly, g(x,y) is 
only dependent on the value of f at (x,y)

 In this case, T is called the gray-level or intensity 
transformation function that can be represented as

s = T(r)

 s is a variable denoting g(x,y)

 r is a variable denoting f(x,y)

 This is kind of processing is referred as point processing



Background
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 Intensity transformation function examples



Fundamentals of Spatial Filtering
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 Filtering is borrowed from the frequency domain 
processing and refers to the process of passing or 
rejecting certain frequency components

 Highpass, lowpass, band-reject , and bandpass filters

 Filtering is achieved in the frequency domain by 
designing the proper filter (Chapter 4)

 Filtering can done in the spatial domain also by using 
filter masks (kernels, templates, or windows)

 Unlike frequency domain filters, spatial filters can be 
nonlinear !



Spatial Filtering Mechanics
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 A spatial filter is characterized by
 A rectangular neighborhood of size mxn (usually m and n are odd)
 A predefined operation that is specified by the mask values at each 

position.

 Spatial filtering Operation
 The filter mask is centered at each pixel in the image and the output 

pixel value is computed based on the operation specified by the mask



Spatial Filtering Mechanics
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Spatial Filtering Mechanics
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 Spatial Filtering Process: The spatial filtering on the 
whole image is given by:

1. Move the mask over the image at each location.

2. Compute sum of products between the mask 
coefficients and pixels inside subimage under the 
mask.

3. Store the results at the corresponding pixels of the 

output image.

4. Move the mask to the next location and go to step 2

until all pixel locations have been used.



Spatial Filtering Mechanics - Example
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The mechanics of image filtering with an N*N=3*3 
kernel filter



Spatial Correlation and Convolution
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 Correlation is the process of moving a filter over the 
image and computing the sum of products at each 
location as explained in the previous slide

 The mechanics of convolution is similar to those of 
correlation, except that the filter mask is rotated by 
180o before sliding



Treatment of Pixels at Edges
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 In the previous slides, we padded the image with zeros 
in both directions in order to compensate for 
unavailable values.

 Other approaches

 Replicate edge pixels

 Consider only available pixels that fall under the mask in 
the computation of the new values

 Truncate the image

 Allow pixels to wrapped around



Smoothing Spatial Filters
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 A smoothing (averaging, blurring) filter replaces each pixel with 
the average value of all pixels under the mask

 Used for blurring and for noise reduction
 Blurring is used in preprocessing steps, such as 

 Removal of small details from an image prior to object extraction
 Bridging of small gaps in lines or curves

 Noise reduction can be accomplished by blurring (noise as it is 
characterized with sharp transitions)

 Replacing the value of every pixel in an image by the average of 
the gray levels in the neighborhood will reduce the “sharp”
transitions in gray levels.
 sharp transitions

 random noise in the image
 edges of objects in the image

 Thus, smoothing can reduce noises (desirable) and blur edges 
(undesirable)



Smoothing Spatial Filters
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 Common smoothing masks

 General Form (weighted averaging filter):
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Smoothing Spatial Filters
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 Notes

 The weighted average filter gives more weight to pixels near 
the center

 The basic strategy behind weighting the center point the 
highest and then reducing the value of the coefficients as a 
function of increasing distance from the origin is simply an 
attempt to reduce blurring in the smoothing process.

 It is hard to see the visual difference between the processing 
results of the two filters; however, the weighted average filter 
summation is 16, which make it more attractive for 
computers



Smoothing Spatial Filters - Example
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Smoothing Spatial Filters - Example
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 Smoothing highlights gross details. Could be useful in 
providing better segmentation results



Smoothing Spatial Filters - Example
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 Noise Reduction



Sharpening Spatial Filters
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 In addition to noise removal, the other two main uses of image 
filtering are for (a) feature extraction and (b) feature 
enhancement.

 The principle objective of sharpening is to highlight transitions 
in intensity which usually correspond to edges in images; thus 
sharpening is the opposite of smoothing

 If we examine the smoothing operation we can think of it as 
integration

 Thus to perform sharpening in the spatial domain, it is intuitive 
to use differentiation

 The strength of the response of a derivative operator is 
proportional to the degree of discontinuity of the image at the 
point at which the operator is applied.
 Thus, image differentiation 

 enhances edges and other discontinuities (noise)
 deemphasizes area with slowly varying gray-level values.



Sharpening Spatial Filters
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 We are concerned about the behavior of 1st and 2nd

derivatives in the following areas
 Constant intensity

 Onset and end of discontinuities (ramps and steps)

 Intensity ramps

 Properties of 1st derivative
 Zero in areas of constant intensity

 Nonzero at the onset of a step and intensity ramp

 Nonzero along intensity ramp

 Properties 2nd derivative
 Zero in areas of constant intensity

 Nonzero at the onset and end of a step and intensity ramp

 Zero along intensity ramp



Sharpening Spatial Filters
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 Derivatives can be approximated as differences

 1st derivative at x

 2nd derivative at x
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Sharpening Spatial Filters
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Sharpening Spatial Filters
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 Investigation of derivatives behavior



Sharpening Spatial Filters
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 Notes

 Examining the 1st and 2nd derivatives plots shows that all of 
their properties are satisfied

 1st derivative produce thicker edges than 2nd derivatives

 2nd derivative produce double edge separated by a zero 
crossing

 2nd derivative is commonly used in sharpening since it has 
simpler implementation and finer edges



Sharpening Using 2nd Derivative
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 when we consider an image function of two variables, f(x,y), at which time we 
will dealing with partial derivatives along the two spatial axes.

 The second derivative (Laplacian) in 2-D is defined as

 If we define

 Then
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Sharpening Using 2nd Derivative
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Sharpening Using 2nd Derivative
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 Computing the Laplacian doesn’t produce a sharpened image. 
However, grayish edge lines and discontinuities superimposed on a 
dark background

 It is common practice to scale the Laplacian image to [0,255] for better 
display



Sharpening Using 2nd Derivative
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 Alternatively, to obtain a sharpened image g(x,y), 
subtract the Laplacian image from the original image



Sharpening Using 2nd Derivative
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 The two steps required to achieve sharpening can be 
combined into a single filtering operation
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Sharpening Using 2nd Derivative
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 Example



Unsharp Masking and High-Boost Filtering
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 A process that has been used for many years by the 
printing process and publishing industry to sharpen 
images.

 Steps:

 Blur the original image

 Subtract the blurred from the original (mask)

 Add the mask to the original



Unsharp Masking and High-Boost Filtering
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 If we use Laplacian filter to create sharpen image fs(x,y) 
with addition of original image then:
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Unsharp Masking and High-Boost Filtering
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 If A  1, High-Boost

 if A = 1, it becomes “standard” Laplacian
sharpening



Unsharp Masking and High-Boost Filtering
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Sharpening Using 1st Derivative
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 The first derivative in image processing is implemented as a gradient which is 
defined as a vector

 The gradient points in the direction of greatest rate of change at location (x,y)

 The magnitude of the gradient is defined as
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Or, approximately



Sharpening Using 1st Derivative - Gradient Mask
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 simplest approximation, 2x2 z1 z2 z3

z4 z5 z6

z7 z8 z9
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Sharpening Using 1st Derivative
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 Computation of the gradient using Roberts cross-
gradient operators
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Sharpening Using 1st Derivative
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 Computation of the gradient using Sobel operators
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Sharpening Using 1st Derivative
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 Example
 Gradient is widely used in industrial inspection as it produce 

thicker edges in the result, which make it easier for machines to 
detect artifacts



Sharpening Using 1st Derivative
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Combining Spatial Enhancements
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Combining Spatial Enhancements
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Combining Spatial Enhancements
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 Compare to enhancement by single method



Nonlinear (Order-statistic) Spatial Filters
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 Order-statistic filters are nonlinear filters whose response is 
based on ordering the pixels under the mask and then replacing 
the centre pixel with the value determined by the ranking result

 Example
 median filter : R = median{zk |k = 1,2,…,n x n}
 max filter : R = max{zk |k = 1,2,…,n x n}
 min filter : R = min{zk |k = 1,2,…,n x n}

 note: n x n is the size of the mask



Median Filters
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 Replaces the value of a pixel by the median of the gray 
levels in the neighborhood of that pixel
 The original value of the pixel is included in the computation of the 

median)

 Quite popular because for certain types of random noise 
(impulse noise  salt and pepper noise) , they provide 
excellent noise-reduction capabilities, with considering less 
blurring than linear smoothing filters of similar size.

 Forces the points with distinct gray levels to be more like 
their neighbors.

 Isolated clusters of pixels that are light or dark with respect 
to their neighbors, and whose area is less than n2/2 (one-
half the filter area), are eliminated by an n x n median filter.

 Eliminated = forced to have the value equal the median 
intensity of the neighbors.

 Larger clusters are affected considerably less



Median Filters - Example
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