IMAGE ENHANCEMENT -
SPATIAL DOMAIN

Aziz M. Qaroush Birzeit University Flrzs(; 136e/;noels7ter



What Is a Digital Image? (Review)

Spatial domain of the image is the set of pixels composing
the image

Enhancement in the spatial domain involves direct
operation on the pixel intensities

This can be expressed mathematically as

g(x,y) = T[f(x,y)]

f(x,y) is the input image
g(x,y) is the output image
T[ ] is an operator defined over some neighborhood of (x,y)

Important

Keep in mind that g(x,y) may take any value from the set of
available gray levels only. Thus, when mapping we should 4
assign the mapped value to the closest level



Background

Defining the neighborhood around (x,y)
Use a square/rectangular subimage that is centered at (x,y)

Operation

Move the center of the subimage from pixel to pixel and apply the
operator T at each location (x,y) to compute the output g(x,y)
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Background

The simplest form of the operator T is when the

neighborhood size is 1x1 pixels. Accordingly, g(x,y) is
only dependent on the value of f at (x,y)

In this case, T is called the gray-level or intensity
transformation function that can be represented as

S = T(r)

s is a variable denoting g(x,y)
ris a variable denoting f(x,y)

This is kind of processing is referred as point processing



Background
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Fundamentals of Spatial Filtering

Filtering is borrowed from the frequency domain
processing and refers to the process of passing or
rejecting certain frequency components

Highpass, lowpass, band-reject , and bandpass filters

Filtering is achieved in the frequency domain by
designing the proper filter (Chapter 4)

Filtering can done in the spatial domain also by using
filter masks (kernels, templates, or windows)

Unlike frequency domain filters, spatial filters can be
nonlinear !



Spatial Filtering Mechanics

A spatial filter is characterized by
A rectangular neighborhood of size mxn (usually m and n are odd)

A predefined operation that is specified by the mask values at each
position.

Spatial filtering Operation

The filter mask is centered at each pixel in the image and the output
pixel value is computed based on the operation specified by the mask
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Spatial Filtering Mechanics
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Spatial Filtering Mechanics

Spatial Filtering Process: The spatial filtering on the
whole image is given by:

Move the mask over the image at each location.

Compute sum of products between the mask
coefficients and pixels inside subimage under the
mask.

Store the results at the corresponding pixels of the
output image.

Move the mask to the next location and go to step 2
until all pixel locations have been used.



Spatial Filtering Mechanics - Example
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Spatial Correlation and Convolution

Correlation is the process of moving a filter over the
image and computing the sum of products at each
location as explained in the previous slide

The mechanics of convolution is similar to those of
correlation, except that the filter mask is rotated by
180° before sliding



Treatment of Pixels at Edges

In the previous slides, we padded the image with zeros
in both directions in order to compensate for
unavailable values.

Other approaches

Replicate edge pixels

Consider only available pixels that fall under the mask in
the computation of the new values

Truncate the image
Allow pixels to wrapped around



Smoothing Spatial Filters

A smoothing (averaging, blurring) filter replaces each pixel with
the average value of all pixels under the mask

Used for blurring and for noise reduction

Blurring is used in preprocessing steps, such as
Removal of small details from an image prior to object extraction
Bridging of small gaps in lines or curves

Noise reduction can be accomplished by blurring (noise as it is
characterized with sharp transitions)

Replacing the value of every pixel in an image by the average of
the gray levels in the neighborhood will reduce the “sharp’
transitions in gray levels.

sharp transitions
random noise in the image
edges of objects in the image

Thus, smoothing can reduce noises (desirable) and blur edges
(undesirable)



Smoothing Spatial Filters

Common smoothing masks

1 1 1 1 2 1
1 1 1 X 1/9 2 4 2 X 1/16
1 1 1 1 2 1

Standard averaging mask Weighted average mask

General Form (weighted averaging filter):

Zalzb:w(s t)f(X+s,y+t)

summatlon of all coefficient of the mask




Smoothing Spatial Filters

Notes

The weighted average filter gives more weight to pixels near
the center

The basic strategy behind weighting the center point the
highest and then reducing the value of the coefficients as a
function of increasing distance from the origin is simply an
attempt to reduce blurring in the smoothing process.

It is hard to see the visual difference between the processing
results of the two filters; however, the weighted average filter
summation is 16, which make it more attractive for
computers



Smoothing Spatial Filters - Example
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Smoothing Spatial Filters - Example

17 |
1 Smoothing highlights gross details. Could be useful in

providing better segmentation results
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FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)



Smoothing Spatial Filters - Example
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Sharpening Spatial Filters

In addition to noise removal, the other two main uses of image
filtering are for (a) feature extraction and (b) feature
enhancement.

The principle objective of sharpening is to highlight transitions
in intensity which usually correspond to edges in images; thus
sharpening is the opposite of smoothing

If we examine the smoothing operation we can think of it as
integration

Thus to perform sharpening in the spatial domain, it is intuitive
to use differentiation

The strength of the response of a derivative operator is
proportional to the degree of discontinuity of the image at the
point at which the operator is applied.

Thus, image differentiation
enhances edges and other discontinuities (noise)
deemphasizes area with slowly varying gray-level values.



Sharpening Spatial Filters

We are concerned about the behavior of 15t and 2nd
derivatives in the following areas

Constant intensity
Onset and end of discontinuities (ramps and steps)
Intensity ramps

Properties of 15t derivative
Zero in areas of constant intensity
Nonzero at the onset of a step and intensity ramp
Nonzero along intensity ramp

Properties 2"9 derivative
Zero in areas of constant intensity

Nonzero at the onset and end of a step and intensity ramp
Zero along intensity ramp



Sharpening Spatial Filters

Derivatives can be approximated as differences
15t derivative at x

Nt x+1)— F(x)
OX

2"d derivative at x
0° f

— = f(x+1)+ f(x-1)-2f(x)
OX



Sharpening Spatial Filters

Investigation of derivatives behavior

Intensity profile:
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Sharpening Spatial Filters

7 Investigation of derivatives behavior
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FIGURE 3.36
Ilustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.



Sharpening Spatial Filters

Notes

Examining the 15t and 2"9 derivatives plots shows that all of
their properties are satisfied

15t derivative produce thicker edges than 2nd derivatives

2"d derivative produce double edge separated by a zero
crossing

2"d derivative is commonly used in sharpening since it has
simpler implementation and finer edges



Sharpening Using 2"d Derivative

when we consider an image function of two variables, f(x,y), at which time we
will dealing with partial derivatives along the two spatial axes.

The second derivative (Laplacian) in 2-D is defined as

2 2
VZ.I: :a -I:(X’y)_l_a f(X,y)

aXZ ay2
If we define azf
" =f(x+lLy)+ f(x=1,y)-2f(X,y)
o° f
~=T(X,y+D)+f(x,y-1)-21(x,y)
Then

Vif =[f(x+1 y)+ f(x-1,Y)
+ f(X, y+D)+ f(x,y—1D)—-4f(x,VY)]



Sharpening Using 2"d Derivative

* The Laplacian can be implemented as a filter mask

g {4
1 | 4 1
g1 0
* Or
L
. s




Sharpening Using 2"d Derivative

Computing the Laplacian doesn’t produce a sharpened image.
However, grayish edge lines and discontinuities superimposed on a
dark background

It is common practice to scale the Laplacian image to [0,255] for better
display

Original Laplacian Laplacian
Image Filtered Image Filtered Image
Scaled for Display



Sharpening Using 2"d Derivative

Alternatively, to obtain a sharpened image g(x,y),
subtract the Laplacian image from the original image

g(x,y)=f(xy)-V*f(x,y)

Original Laplacian Sharpened
Image Filtered Image Image



Sharpening Using 2"d Derivative

The two steps required to achieve sharpening can be
combined into a single filtering operation

g(x,y)=1(x,y)-[T(x+Ly)+ T(x-1Y)
+ (X, y+D)+ f(x,y=1D)+41f(x,y)]
=5f(X,y)-[f(x+Ly)+ f(x=1Yy)
+ (X, y+1D)+ f(X,y-1)]

0 -1 0
-1 5 -1
0 -1 0




Sharpening Using 2"d Derivative
30
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FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
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Unsharp Masking and High-Boost Filtering

A process that has been used for many years by the

printing process and publishing industry to sharpen
Images.

Steps:
Blur the original image

Subtract the blurred from the original (mask)
Add the mask to the original



Unsharp Masking and High-Boost Filtering

S
0 If we use Laplacian filter to create sharpen image f(x,y)

with addition of original image then:

o 23T
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Unsharp Masking and High-Boost Filtering

0 —1 0 —1 —1 —1
—1 A+4 -1 —1 A+ B -1
0 —1 0 —1 —1 -1

m If A>1, High-Boost

m ifA=1, it becomes “standard” Laplacian
sharpening



Unsharp Masking and High-Boost Filtering

3 ab
¢ d
FIGURE 3.43
(a) Same as
Fig. 3.41(c). but
darker.
(a) Laplacian of
(a) computed with
the mask in
Fig. 3.42(b) using
A= 0.
(¢) Laplacian
enhanced image

using the mask in
Fig. 3.42(b) with
A =1.(d)Same
as (¢). but using
A= 1.7




Sharpening Using 18! Derivative

The first derivative in image processing is implemented as a gradient which is
defined as a vector _

Wi

o1 | &

| x| | oXx
V“‘M‘ ot
| OY |

The gradient points in the direction of greatest rate of change at location (x,y)

The magnitude of the gradient is defined as

Vi =mag(Vf) =[G? + G2] 2

Or, approximately
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Sharpening Using 15t Derivative - Gradient Mask

simplest approximation, 2x2 Z, Z, | Zz,

G, =(z,-2;) and Gy = (25— Z5)

Vi = [Gf "‘Gj]% — [(28 - 25)2 T (Z6 — 25)2]%

Vf = |z, — 5| +|z, — Z4



Sharpening Using 18! Derivative

Computation of the gradient using Roberts cross-
gradient operators

o | & - Horizontal Operator Vertical Operator

G, =(z,-2;) and Gy = (2, 2;)

Vi =[G} +G]1 =2~ 2,)" +(2,-2,)']

Vf =z, — 25| +|2, — 2,



Sharpening Using 18! Derivative

Computation of the gradient using Sobel operators

Z1 Z2 Z3 -1 -2 -1 -1 0 1
Z4 YAS Z6 0 0 0) -2 0 2
Z7 Z8 Z9 1 2 1 -1 0 1

Pixel z5 and its neighbours Mask to Compute Gx Mask to Compute Gy

G, =(z,+22,+2,)— (2, + 22, + 2,)
G, =(z;+225 +24) — (2, + 22, + Z;)

Vi z\GX\+\Gy\



Sharpening Using 18! Derivative

Example

Gradient is widely used in industrial inspection as it produce
thicker edges in the result, which make it easier for machines to
detect artifacts
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Optical Image for a contact lens Gradient Image




Sharpening Using 15t Derivative

Gx computed using
Sobel Operator

| 11T e
Gy computed using N
Sobel Operator IGX| + |Gy



Combining Spatial Enhancements

a b
c d

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).




Combining Spatial Enhancements

e f
g h

FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(g) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)




Combining Spatial Enhancements

Compare to enhancement by single method

Processed by a Sharpened by Histogram Power-Law with
combination of Laplacian Equalization gamma = 0.5
a. methods



Nonlinear (Order-statistic) Spatial Filters

Order-statistic filters are nonlinear filters whose response is
based on ordering the pixels under the mask and then replacing
the centre pixel with the value determined by the ranking result

5t @ 9

24 | z5 | zo |Wmmmp RIS

Zz7

New value

Example
median filter : R = median{z, |k=1,2,...,n x n}
max filter : R = max{z, |k=1,2,...,n x n}
min filter : R=min{z, |k=1,2,...,nx n}
note: n x n is the size of the mask



Median Filters

Replaces the value of a pixel by the median of the gray
levels in the neighborhood of that pixel

The original value of the pixel is included in the computation of the
median)

Quite popular because for certain types of random noise
( ), they
, With considering

Forces the points with distinct gray levels to be more like
their neighbors.

Isolated clusters of pixels that are light or dark with respect
to their neighbors, and whose area is less than n?/2 (one-
half the filter area), are eliminated by an n x n median filter.

Eliminated = forced to have the value equal the median
intensity of the neighbors.

Larger clusters are affected considerably less




Median Filters - Example

e o

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente. Lixi. Inc.)



